Determination of the Difference in Hard-sphere Volume of Conformational Isomers from Sound Velocity

Masakatsu AoI and Kiyoshi Arakawa* Research Institute of Applied Electricity, Hokkaido University, Sapporo 060 (Received April 11, 1980)

Synopsis. The difference in hard-sphere volume of conformational isomers $\Delta V/V$ was determined from sound velocity data by a method proposed on the basis of the Lebowitz theory of solutions. The $\Delta V/V$ values between conformers were found to be 6, 9, 12, 7, and 12% for 1,1,2,2tetrachloroethane, 1,1,2,2-tetrabromoethane, 1-chloropropane, 1-bromopropane, and ethylcyclohexane, respectively.

We proposed an ultrasonic method suitable for the determination of the difference in hard-sphere volume of conformational isomers $(\Delta V/V)$ from sound velocity data,1) based on the Lebowitz theory,2) and applied the method to halogenoethanes and cyclohexane derivatives1b) as typical compounds with conformational isomerism.3-6)

In order to obtain further information on $\Delta V/V$ of conformational isomers, 1,1,2,2-tetrachloroethane (CHCl₂CHCl₂), 1,1,2,2-tetrabromoethane CHBr₂), 1-chloropropane (CH₃CH₂CH₂Cl), 1-bromopropane (CH₃CH₂CH₂Br), and ethylcyclohexane (c- $C_6H_{11}C_2H_5$) have been investigated.

An equilibrium mixture of conformational isomers we studied is considered to be a binary mixture of hard spheres. The formula for isothermal compressibility (κ_{τ}) of the equilibrium mixture was derived from the equation of state for the binary mixture of hard spheres.²⁾ Details of the procedure for analysis

were described in the preceding paper, 1b) notations used here being identical with those in it.

For the case of c-C₆H₁₁C₂H₅, the relaxation frequency $f_{\rm r}$ is smaller than the frequency f used for the measurement of sound velocity.7) In this case, κ_T is expressed by

$$\kappa_T = \left[\frac{RT(1+2\xi)^2}{V(1-\xi)^4} - \frac{2}{V}(\Delta H_{v} - RT) \right]^{-1}.$$
 (1)

For CHX_2CHX_2 and $CH_3CH_2CH_2X^{5,8,9}$ $(f_r\gg f)$, κ_T is given by

$$\kappa_{T} = \left[\frac{RT(1+2\xi)^{2}}{V(1-\xi)^{4}} - \frac{2}{V} (\Delta H_{v} - RT) \right]^{-1} + \frac{V(\Delta V/V)^{2}}{2RT\{1 + \cosh(\Delta G/RT)\}}.$$
(2)

 $\Delta V/V$ is expressed by

$$\frac{\Delta V}{V} = \frac{N_{\rm A}}{\xi V} (v_2 - v_1) = \frac{v_2 - v_1}{v_{\rm a}},\tag{3}$$

where ξ is packing fraction (= ρv_a), v_a average hardsphere volume, and v_i hard-sphere volume of the i-th component. Putting the experimental values of κ_T into Eq. 1 or Eq. 2, we determine the magnitudes of v_a , v_i , and $\Delta V/V$. The temperature coefficient α_t of the effective hard-sphere volume was calculated in a similar manner to that reported. 1b)

TABLE 1. RESULTS FOR d. n. Kg. AND Km

		Temp/°C							
		15	20	25	30	35	40	45	
$\frac{d}{10^3 \mathrm{kg \ m^{-3}}}$	CHCl2CHCl2	1.6049	1.5969	1.58914	1.58133	1.57341	1.56585	1.55798	
	CHBr ₂ CHBr ₂	2.97618	2.9649_{8}	2.9537,	2.9424_{5}	2.9311_{5}	2.9199_{6}	2.9087	
	CH ₃ CH ₂ CH ₂ Cl	0.8984_{5}	0.89218	0.8858_{3}	0.8795_{4}	0.8729_{8}	0.8668_{3}	0.8601	
	CH ₃ CH ₂ CH ₂ Br	1.3618,	1.3534,	1.3450_{8}	1.33676	1.32818	1.3196 ₆	1.3110	
	c - $C_6H_{11}C_2H_5$	0.79138	0.7873_{6}	0.7832_{9}	0.7793_{0}	0.7752_{0}	0.7711_{3}	0.7670_{ϵ}	
	, CHCl ₂ CHCl ₂	1182.5	1166.1	1149.9	1134.1	1118.1	1102.3	1086.5	
	CHBr ₂ CHBr ₂	1051.3	1039.5	1029.1	1018.4	1007.6	997.2	986.7	
	CH ₃ CH ₂ CH ₂ Cl	1109.8	1087.3	1066.6	1043.8	1024.1	1002.0	980.5	
	CH ₃ CH ₂ CH ₂ Br	988.3	970.8	954.3	937.3	920.2	904.1	887.7	
	c-C ₆ H ₁₁ C ₂ H ₅	1312.0	1290.4	1269.1	1248.2	1227.3	1206.3	1185.6	
	CHCl2CHCl2	44.56	46.05	47.59	49.17	50.84	52.56	54.37	
$\frac{\kappa_{S}}{10^{-11} \text{ Pa}^{-1}}$	CHBr ₂ CHBr ₂	30.40	31.21	31.97	32.77	33.60	34.44	35.31	
	CH ₃ CH ₂ CH ₂ Cl	90.37	94.81	99.23	104.35	109.22	114.90	120.93	
	CH ₃ CH ₂ CH ₂ Br	75.18	78.40	81.64	85.15	88.92	92.71	96.79	
	c-C ₆ H ₁₁ C ₂ H ₅	73.41	76.27	79.27	82.36	85.64	89.12	92.75	
κ _T 10 ⁻¹¹ Pa ⁻¹	, CHCl, CHCl,	60.25	62.01	63.80	65.63	67.55	69.52	71.56	
	CHBr ₂ CHBr ₂	42.48	43.42	44.30	45.22	46.18	47.13	48.13	
	CH ₃ CH ₂ CH ₂ Cl	131.25	136.27	141.28	147.00	152.47	158.74	165.38	
	CH ₃ CH ₂ CH ₂ Br	105.60	109.23	112.89	116.82	121.01	125.22	129.74	
	c-C ₆ H ₁₁ C ₂ H ₅	94.78	97.88	101.10	104.43	107.93	111.62	115.46	

Table 2. $\Delta V/V$ and v_a and thermodynamic parameters at 25	TABLE	2. $\Delta V/V$	AND vo	AND	THERMODYNAMIC	PARAMETERS	ΑТ	25 °C
--	-------	-----------------	--------	-----	---------------	------------	----	-------

	$-\Delta V/V$	$\frac{v_{\rm a}}{10^{-30}~{ m m}^3}$	$\frac{\alpha^{a}}{10^{-3} \text{ K}^{-1}}$	$\frac{C_p}{\text{J K}^{-1}\text{mol}^{-1}}$	$rac{\Delta H_{ t v}}{ ext{kJ mol}^{-1}}$	$\frac{\Delta H}{ ext{kJ mol}^{-1}}$
CHCl ₂ CHCl ₂	0.06	95.75	0.9874	189.4b,c)	45.78d)	-4.60e)
$\mathrm{CHBr_2CHBr_2}$	0.09	114.9_{6}	0.7649	165.6 ^{b)}	70.00b)	-3.45^{e}
$\mathrm{CH_{3}CH_{2}CH_{2}Cl}$	0.12	69.3_{5}	1.4494	132.1b)	28.49b)	$-1.26^{\rm e}$
$\mathrm{CH_{3}CH_{2}CH_{2}Br}$	0.07	74.2_{3}	1.2668	140.0b)	31.92 ^{b,d)}	—1.97°)
$c\text{-}\mathrm{C}_{6}\mathrm{H}_{11}\mathrm{C}_{2}\mathrm{H}_{5}$	0.12	126.3_{0}	1.0406	211.8^{f}	40.48^{b}	7.53g)

a) Observed values. b) J. A. Riddick and W. B. Bunger, Techniques of Chemistry, Vol. 2, "Organic Solvents," 3rd ed, Wiley Interscience, New York (1970). c) E. W. McGovern, *Ind. Eng. Chem.*, **35**, 1230 (1943). d) J. Laynez and I. Wadsö, *Acta Chem. Scand.*, **26**, 3148 (1972); I. Wadsö, *ibid.*, **22**, 2438 (1968). e) Ref. 3. f) H. M. Huffman, S. S. Todd, and G. D. Oliver, *J. Am. Chem. Soc.*, **71**, 584 (1949). g) Ref. 4.

Experimental

Sound velocity v was measured with an interferometer working at 3 MHz and density d with a pycnometer. The temperature was controlled within ± 0.05 °C. Samples were carefully purified before measurements. The accuracy of v is ± 0.3 m/s. Adiabatic and isothermal compressibilities (κ_S and κ_T) were estimated from density, sound velocity, and other thermodynamic quantities.

Results and Discussion

Values of d, v, κ_s , and κ_T determined for CHX₂CHX₂, CH₃CH₂CH₂X (X=Cl and Br), and c-C₆H₁₁C₂H₅ are summarized in Table 1. The results for v_a and $\Delta V/V$ are given in Table 2, together with values of α , C_p , ΔH_v , and ΔH required for the determination of v_a and $\Delta V/V$. Values of α_t were estimated to be -1.6, -1.3, -2.0, -1.9, and -1.7×10^{-4} K⁻¹ for CHCl₂-CHCl₂, CHBr₂CHBr₂, CH₃CH₂CH₂Cl, CH₃CH₂CH₂Br, and c-C₆H₁₁C₂H₅, respectively.

It was found from the negative value of $\Delta V/V$ (Table 2) that the value of v_1 is larger than that of v_2 . For $\mathrm{CHX_2CHX_2}$ and $\mathrm{CH_3CH_2CH_2X}$, v_1 corresponds to the anti form, and to the equatorial form for c- $\mathrm{C_6H_{11}C_2H_5}$. Wyn-Jones et al.⁶) and Christian et al.¹⁰) also reported similar results for $\mathrm{CHCl_2CH_2Cl}$ by means of the ultrasonic absorption method and the pressure effect of infrared spectroscopy. In the case of $\mathrm{CHX_2-CHX_2}$, the value of $|\Delta V/V|$ for chloro compound is smaller than that for bromo compound, while it is reversed for $\mathrm{CH_3CH_2CH_2X}$ and $\mathrm{CH_2XCH_2X.^{10}}$) For c- $\mathrm{C_6H_{11}C_2H_5}$, the magnitude of $\Delta V/V$ (12%)

is nearly equal to that of $c\text{-C}_6H_{11}\text{CH}_3$ (11%).^{1b)} It agrees with the results of $c\text{-C}_6H_{11}\text{CH}_3^{1b)}$ and $c\text{-C}_6H_{11}\text{X}$ reported by Christian *et al.*¹⁰⁾ that the equatorial form was found to be larger than the axial one.

Our method is convenient and accurate for the determination of $\Delta V/V$ in conformational isomerism, as compared with the ultrasonic absorption method⁶⁾ used so far.

References

- 1) a) M. Aoi and K. Arakawa, Bull. Chem. Soc. Jpn., 47, 2639 (1974); b) ibid., 53, 845 (1980).
- 2) J. L. Lebowitz, *Phys. Rev. A*, **133**, 895 (1964); K. Tokiwano and K. Arakawa, *Bull. Chem. Soc.*, *Jpn.* **50**, 2217 (1977).
 - 3) N. Sheppard, Adv. Spectrosc., 1, 288 (1959).
- 4) E. L. Eliel, N. L. Allinger, S. J. Angyal, and G. A. Morrison, "Conformational Analysis," Interscience Publ., New York (1967), Chaps. 1, 2.
- 5) J. Lamb, "Physical Acoustics," ed by W. P. Mason, Academic Press, New York (1965), Vol. 2A, Chaps. 4, 5.
- 6) E. Wyn-Jones and W. J. Orville-Thomas, "Molecular Relaxation Processes," Chem. Soc. Spec. Publ., No. 20 (1966), p. 209; K, R, Crook and E. Wyn-Jones, J. Chem. Phys., 50, 3445 (1969); K. R. Crook, E. Wyn-Jones, and W. J. Orville-Thomas, Trans. Faraday Soc., 66, 1597 (1970).
- 7) J. Lamb and J. Sherwood, Trans. Faraday Soc., 51, 1674 (1955).
- 8) K. Krebs and J. Lamb, Proc. R. Soc. London, Ser. A, 244, 558 (1958).
- J. R. Pellam and J. K. Galt, J. Chem. Phys., 14, 608 (1946); R. A. Padmanaban, J. Sci. Ind. Res., 19B, 336 (1960).
 S. D. Christian, J. Grundnes, and P. Klaboe, J. Chem. Phys., 65, 496 (1976); J. Am. Chem. Soc., 97, 3864 (1975).